Skip to content


8 Reasons to Move Your Data Center to Microsoft Azure

If you are a Managed Service Provider (MSP) with a focus on managing hosted infrastructure, then you’ve likely invested in creating a data center of your own in a colocation facility.  Such data center deployments can be fun to create and historically have been able to provide significant margin advantages when pricing and selling managed infrastructure services at scale. 

With significant technology and pricing changes due to the emergence of public cloud in recent years, it is time to evaluate if maintaining and investing in your current data center is still the best option for your business.  Microsoft is making significant investments in driving partner adoption of Azure with programs like Data Center Optimization (DCO).

If you have not yet explored the pros and cons of an Azure data center migration, here are eight reasons why you should consider making the switch.   

1. Hardware Refresh 

Private data center deployments are typically a CapEx investment for an MSP, which is capitalized and then depreciated over the course of the useful life of the equipment.  With warranties on most equipment like SANs and blade servers of 4-5 years, depreciating even sizable investments over 60 months creates a very attractive cost structure on the P&L– until the time comes to refresh the equipment. 

When the initial investment is made into compute, storage, and networking equipment, everything is brand new and performing well.  As the equipment ages and reaches the end of its useful life, it becomes less reliable with frequent component failures that can affect the production environment.  Replacing equipment is not only a significant CapEx (cash) outlay, but the complexity of doing so in a non-disruptive way is quite high.   

When you first deployed your data center, you were doing a greenfield deployment with maybe a handful of customers.  You now have tens, hundreds, or even thousands of customers relying on the equipment that you need to replace, and the longer you wait, the more you risk an outage — which can create high customer dissatisfaction.  Even if the equipment is operating reliably, the risk of having your SAN or blade chassis be out of manufacturer’s warranty is high risk.  If a component fails and you can’t get a replacement quickly, that could spell disaster for your customers. 

With Azure, the equipment backing your deployment is owned by Microsoft.  Microsoft owns the responsibility for the hardware stack, therefore any failures are theirs to fix.  You will no longer have to worry about wholesale hardware refresh cycles once you make the switch to Azure.  Hardware refresh cycles are painful and migrating to an Azure data center can make them a thing of the past.   

2. The Cost Structure and the Average Fixed Cost (vs. Marginal Cost) Fallacy 

Initially, an efficient data center deployment’s long depreciation period of 60 months can create a cost structure that appears an order of magnitude better than a comparable deployment in Azure.  However, this advantage is only superficial.  Logic would dictate that Microsoft’s hyper-scale data centers should provide them with significant economies-of-scale cost benefits.  You can argue and say that although Microsoft does have a much better cost structure on the infrastructure than you do, they may not decide to pass the savings onto the customer. Or that they will only seek to capture it as their own gross margin and make more money on Azure.   

Don’t forget, though, that Microsoft has large and aggressive competitors in the public cloud space (Amazon, Google, and IBM, to name a few) and they are all in a land-grab for as much market share as possible.  They are not necessarily in margin-optimization mode today and price-parity (providers matching each other’s pricing) is the rule rather than the exception.  If so, it would stand to reason that if Microsoft’s infrastructure margins are thin due to competition, their prices would be as good or better than what a smaller scale MSP can achieve on cost with their own data center.  So, why does it seem like your data center cost structure is better than Microsoft’s Azure prices? 

The answer comes down to two main things:  

  1. Comparing CapEx costs that are depreciated over a long period with Azure’s Pay-As-You-go list prices
  2. Confusing average fixed costs with marginal costs 

CapEx costs vs. Azure’s Pay-As-You-Go (PAYG) list prices 

Let’s take compute as an example.  You can buy a Dell PowerEdge M630 server blade with two E5-2698 V4 processors (40 hyper-threaded cores each) and 768GB of RAM for $20K.  This doesn’t take the blade chassis, network switch, power, and hosting infrastructure into account.  Let’s add another 20% for that.  That increases it to $24K all-in, which is $300 per hyper-threaded core with 9.6GB of RAM per core.  That’s a $300/core upfront cash outlay that gets depreciated over 60 months and comes out to $5 per core per month (this does not take cost of capital cash flow discounting into account, which would make the cost a bit higher).  

Azure doesn’t even come close when looking at their Pay-As-You-Go pricing.  The closest comparable VM is a F72sv2, which has 72 CPU cores and 576GB of RAM with a PAYG list price of $4,651/month – that $65 per core per month!  Not even in the same ballpark. 

However, consider the fact that the cost of your Dell PE M630 does not include any OS licensing and you’re making a five-year commitment by purchasing it upfront.  It’s not accurate to compare this to Azure’s PAYG prices, which include the Windows Server OS license for 72 cores and the option of turning the VM off to stop paying for it at any time you wish.  A more accurate comparison would be to the price of the same Azure VM but with a 3-year Reserved Instance and Azure Hybrid Usage enabled (a licensing program from Microsoft that includes the Windows Server OS license).  The cost then drops down to $806/month or $11 per core per month — still double the cost of the Dell server option –but we’re not done yet. 

If you’re a Direct CSP then you get a 5% discount on Azure Reserved Instances (RI).  There is currently a global RI incentive in place of an additional 10%.  There is also a global accelerator rebate of 8% on Azure consumption, a 2% rebate on new Azure customer adds, and special programs like DCO (Data Center Optimization) which can add an additional 20%.  Your starting price of $11/core/month minus 45% in discounts and rebates bring it down to $6/month.  Getting closer. 

Average fixed cost (AFC) vs. Marginal cost (MC) 

Although this is a simple Economics 101 concept, for ease of analysis we often ignore its significant effect on properly understanding the true cost structure.  Average Fixed Cost (AFC) means simply taking the total fixed cost (Dell PE M630 for $24k, in this example) and calculating its average cost over the course of 60 months.  On average the server will cost you $5/core/month regardless of whether it’s used or not.  If you fill it up with billable customer workloads, it will cost you $5/core/month.  If it sits idle with no revenue generating workloads, it will still cost you $5/core/month.   

Marginal Cost (MC), on the other hand, is only incurred if you have the customer demand to justify spending the money.  With Azure, if you have no customers, then your marginal cost will be $0.  If you have a small number of customers, you can buy any size VM that supports that size workload and then upgrade as needed.  This is true even if you’re reserving Azure capacity for three years given the ability to exchange reservations at no charge.   

Why does this matter?  It’s very tempting to calculate the AFC of a piece of hardware by dividing the cost into the number of months it’s going to be used.  But this doesn’t consider that you won’t fill up every piece of hardware you purchase on day one that it is purchased.  Not only that, but you’ll never fill your hardware to 100% capacity even if customer demand is there because you want to have redundancy in case of failure and you want to leave some spare capacity for peak demand.  How does this change the math?   

Let’s assume you decide that you won’t utilize the server at 100% but rather will keep it below 70% for redundancy and peak demand reasons.  You’re also expecting to build up this utilization evenly over time.  In month 1, you’ll start out with 0% utilization and at the end of month 60 you’ll be at your peak 70% utilization.  This means that the average utilization over the 60 months is 35%.  With this new piece of data, we need to reassess our cost comparison between Azure’s $6/core/month cost vs. the Dell server $5/cost/month where we assume 100% utilization throughout the 60-month life of the server.  Since our actual utilization is 35% on average and we use Azure’s flexible VM sizing to perfectly fit this utilization, we end up with Azure’s per-CPU cost being about $2/core/month, which is significantly lower than the Dell M630 alternative. 

Similar analysis can be applied to other infrastructure components such as storage and bandwidth.  Not every analysis will produce such a cost advantage for Azure, but compute is a significant cost component and typically tilts the analysis in Azure’s favor. 

With Azureyou get to take advantage of public cloud’s flexibility to closely match the capacity you purchase with the demand from your customers.  By leveraging reserved instances and not renting the Windows Server OS via Azure (more on this below), you can achieve a clear cost advantage at a much lower scale than you can with a private data center. 

3. Microsoft Owns the Software 

Microsoft owns the foundational software components of a hosted IT stack, assuming you live in a Windows world.  They own Windows Server, SQL Server, Windows 10, and much more.  It would stand to reason that Microsoft would use their control over the software stack components to make Azure more cost effective than the alternatives.  Remember, today it’s a market share play with Azure trying to grab as much of the market as it possibly can knowing that once a workload is in Azure it’s unlikely to move.  Microsoft leverages Windows Server and SQL Server (as an example), which have $0 marginal cost to the company being pure software, to position Azure as the cloud of choice. 

Let’s see an example of how this works. 

If you run Windows Server on your data center hardware, you’re likely using SPLA to license Windows Server Datacenter Edition on a per-core basis.  You’re paying about $28/month for a 2-core license just for the Windows Server OS.  That’s two physical cores and assuming hyper-threading you’re paying about $7/month per hyper-threaded core.  With Azure Hybrid Usage and Software Subscriptions via CSP you can purchase an 8-core Windows Server OS license for $14/month with a 36 month pre-payment.  That’s less than $2/month per core as compared to $7.  A big cost advantage. 

Microsoft is doing many other things to make Azure the best platform for your workloads.  Do you currently have Windows Server 2008 or SQL Server 2008 in your environment?  If so, support is ending, and no more security updates will be provided, leaving customers exposed to hackers and malware.  You have three options: rebuild your Windows Server 2008 and SQL Server 2008 environments with the latest versions to get updates, pay for extended security updates, or migrate the servers to Azure as they are and get an additional three years of updates for free!  Another compelling reason to not spend the money on doing Windows Server OS and SQL upgrade work on premises, but rather lift-and-shift the VMs to Azure. 

4. Global footprint and redundancy 

Your data center is unlikely to have a global footprint and certainly not anything close to Microsoft’s 54+ global regions.  If your current customers are geographically distributed or even if you want to replicate data across data centers in the same country, a local data center strategy is not optimal.  Operating a centralized data center leads to unnecessary latency and performance degradation for users who are far away and building and maintaining distributed data centers becomes very expensive quickly. There is no question Microsoft will continue to increase their data center footprint to include more regions and availability zones and they will do so faster than any MSP can ever hope to do with their own data center resources. 

5. Market demand 

Study after study shows that as cloud acceptance increases, organizations become more and more comfortable moving their IT into the cloud.  Whereas a few years ago the market had privacy and security concerns when it came to the public cloud and instead preferred smaller, private deployments, this is no longer the case.  The market is predominantly shifting towards a consumption based, hyper-scale public cloud model and more and more customers are asking for a specific cloud by name.  As time goes on, it will become difficult to justify running IT workloads in a private data center rather than in a world-class, always up-to-date, secure, and fully certified public cloud like Microsoft Azure. 

There will always be niche use-cases for non-public cloud deployments in certain industries and regulated verticals.  However, these will become more of an exception than the rule. 

6. The “bus test” 

If you’re like most MSPs who operate a data center, then you have a “guy” or a “few guys” or maybe you are “the guy” who knows the deployment inside and out.  Any major issue must be escalated to this person and he or she is the ultimate technical guru when it comes to your data center.  The question is does it pass the “bus test”?  Can your business survive if this individual would get figuratively hit by a bus — or more likely find another job?  Is this a risk to your business you can tolerate?  For some, the risk is acceptable, for others who are thinking of continuity, succession, and building long-term business value, it is not.   

With Azure, your customers will be using a world-class platform which is well known and understood throughout the IT industry.  There are plenty of training courses and certification tracks with more being added each day.  An Azure data center deployment can be supported by people other than your “guy.”  It may not be easy to find this talent and today it is not cheap, but it’s certainly possible and less risky. 

7. Who’s to blame? 

Few things are more stressful to an MSP owner than a widespread data center outage that is affecting customers’ ability to conduct business.  When this happens, the rest of your company grinds to a halt, blood pressure rises, and all attention is immediately diverted to resolving the outage.  Once resolved, there are scores of customers to talk to about what happened, apologize for the situation, and communicate a plan of how this won’t happen again.  Outages can be mitigated with proper setup, maintenance, and redundancy, but it is not possible to completely eliminate them.  Even Microsoft and Amazon, who invest billions into their data centers, experience outages.  When an outage does happen, do you want the stress of solving the problem and dealing with the fallout?   

With Azure, outages are rare, but they do happen.  When they happen there is nothing for you to do, no bridge call to set up with all of your engineers, no RCA to write, and really no one blames you for it.   There is no negativity that accrues to your company. Azure outages are publicly visible and usually high profile.  It is unfortunate when they happen but not having to deal with the consequences of your own data center outage is priceless. 

8. Management and control plane 

Most data center deployments consist of a combination of technologies loosely coupled together.  There typically isn’t a common management interface for all the pieces.  Virtual machines may be managed in one portal, SAN in another, and network switches in yet another.  Since managing most of the components requires specialized knowledge of unique technologies, there are typically very few engineers at an MSP who are given the keys to make changes.  This often leads to a bottleneck scenario where all routine changes (e.g. creating a new VM or setting up a VPN) must be escalated to a handful of already busy engineers instead of being done by lower-skilled resources. 

With Azure, you can use IT automation tools like Nerdio to simplify the management of the underlying infrastructure through an easy-to-use, single-pane-of-glass portal that can be delegated down to the help desk technician level for basic IT administration tasks without the need to expose admin access to the underlying infrastructure. 


There are many compelling reasons to consider moving your data center to Azure.  The timing may not always be right such as if you’ve recently built out or refreshed your data center equipment you may want to wait until it depreciates for some time.  When you do decide to make the switch, be sure to leave yourself with enough time to architect the proper solution, understand the cost implications, and create a gradual migration plan.  Six to twelve months is a good time frame to budget for a sizable migration project. The secular trend of public cloud computing, however, is not something coming down the road—it is here today—and it is important for every MSP to understand the benefits and implications of moving to the public cloud. 

At Nerdio, we enable MSPs with technology and resources to build successful cloud practices in Azure. Our Partner Solutions team has extensive experience helping MSPs evaluate and execute transitions from private data centers to Azure.


Multi-Cloud and On-Premises Deployment with Azure Stack HCI (Coming Soon)

Deploy Azure Virtual Desktop in Azure and extend the session host VM placement to on-premises and other cloud using Azure Stack HCI. Nerdio Manager automates deployment of session hosts, AVD agent installation, and full integration into the AVD deployment in Azure.

Create a brand new Azure Virtual Desktop environment or allow Nerdio Manager to discover an existing deployment, connecting to existing resources, and manage them.

Deploy Nerdio Manager from Azure Marketplace and configure a new AVD environment with an easy to follow, step-by-step configuration wizard. First group of users can access their AVD desktop in less than 2 hours.

Service providers, system integrators, and consultants can leverage Nerdio Manager’s scripted AVD deployment template. Create complete environments with desktop images, host pools, and auto-scaling in minutes.

Create and manage AVD environments that span Azure regions and subscriptions. Quickly link Vnets and resource groups and manage AVD deployments world-wide from unified portal.

Link multiple Azure tenants under the same Nerdio Manager instance and manage AVD deployments that span Azure AD tenants. User identities and session host VMs can run in separate tenants for maximum flexibilty and security.

Deploy and manage AVD environments that span across sovereign Azure Clouds. Cross-sovereign cloud support allows identity (e.g. users and groups) to be in one Azure Cloud, while session host VMs are in another Azure Cloud.

Management of workspaces, host pools, app groups, RemoteApps & custom RDP settings

Administer every aspect of AVD with Nerdio Manager including workspaces, host pools, application groups, RemoteApp publishing, RDP properties, session time limits, FSLogix, and much, much more. Every Azure service that AVD relies on can be managed with Nerdio Manager.

Deploy and manage AVD session host VMs. Hosts can be created manually or with auto-scaling, deleted on-demand or on a schedule, re-imaged to apply updates, run a scripted action, resized, put into or taken out of drain mode, and more.

Manage user sessions across the entire AVD environment, within a workspace, host pool or on a single host. Monitor session status, disconnect or log off the user, shadow or remote control to provide support, or send user an on-screen message.

End users have the ability to log into Nerdio Manager with their Azure AD credentials and manage their own session, restart their desktop VM, or start a session host if none are started in a host pool. (Ability to resize and re-image own desktop is coming soon.)

Create, link, and manage Azure Files shares including AD domain join. Synchronize Azure Files permissions with host pools, configure quotas, and enable SMB multi-channel. Manage file lock handles and configure Azure Files auto-scaling to increase quota as needed.

Create, link, and manage Azure NetApp Files accounts, capacity pools and volumes. Configure provisioned volume size, monitor usage, and use auto-scaling to automatically adjust volume and capacity pool size to accommodate the needed capacity and latency requirements.

FSLogix configuration can be complex and overwheling, but not with Nerdio Manager. Create one or more FSLogix profiles with all the needed options, point at one or more Azure Files, Azure NetApp Files, or server locations and select from VHDLocations, CloudCache and Azure Blob storage modes.

Multiple identity source profiles can be set up and used automatically on different host pools. Active Directory, Azure AD DS, and Native Azure AD are all supported. Choose the appropriate directory profile when adding a host pool and all VMs will automatically join this directory when being created.

Create a copy of a host pool with all of its settings: auto-scale config, app groups and RemoteApps, MSIX AppAttach, user/group assignments, VM deployment settings, etc. Save time by creating host pool “templates” that can be cloned to any Workspace, Azure region or subscription instead of starting from scratch.

Apply user session time limits at host pool level. Automatically log off disconnected sessions, limit the duration of idle sessions, control empty RemoteApp session behavior and more.

Assign Azure AD users to personal desktops to ensure the user will log into a pre-configured VM. Un-assign personal desktops from users who leave the organization and re-use these VMs for new users.

Pre-configure custom Azure tags for all Azure resources associated with each host pool. Tags can be used for charge-back and cost allocation by host pool.

When creating session hosts using NV-series VMs NVIDIA and AMD GPU drivers are automatically installed.

Move existing host pools from Fall 2019 (Classic) object model to Spring 2020 (ARM) object model. Choose to whether to move or copy user assignments. Existing session hosts are automatically migrated or new ones can be created in the ARM host pool.

Automatically enable and configure AVD integration with Azure monitor. Zero configuration required. Azure Monitor Insights for AVD can be used instead of or in conjunction with Sepago Monitor.

AVD personal desktops to Windows 365 Cloud PC migration (Coming Soon)

Migrate users from AVD personal desktops to Windows 365 Enterprise Cloud PCs using an existing image and user assignment. (Coming soon)


Create desktop images from a single pop-up with just a few clicks. No need to Sysprep, capture, version or do any of the other complex Azure image management tasks. Nerdio Manager fully automates the process. Desktop Images can start with a gallery image, existing custom image, or even an existing VM. Images can be stored as custom or Shared Image Gallery integrated objects.

Duplicate desktop images by cloning them to either the same region or another Azure region. Make a clone before making major changes to the image so the changes can be tested without impact the production environment. All with one click.

Distribute desktop images to multiple Azure regions by selecting the locations where the images should be available. Can be enabled on new or existing images. A single desktop image VM can now be used to update AVD session hosts in all locations.

Schedule a recurring update to Desktop Images and automatically re-image host pools on a pre-defined schedule. System and application updates can be automatically applied after hours without manual intervention.

Schedule a regular refresh of a desktop image from Azure Marketplace using the latest patched version. Customize the image with scripted actions and have it automatically deployed to host pools for full end-to-end update automation.

Leverage native Azure backup to create versions of desktop image VMs before making changes and easily revert to prior versions. Take a backup of an image VM while powering it on to modify or manually trigger a backup at any time.

Maintain multiple version of a desktop image by retaining old versions during image updates. These version can be easily used to deploy session hosts in the future.

Modify and update production images and test them without affecting current production host pools that use these images. When updating an image, select for the new version to be created in “staged” mode. Designated test host pools can start using and testing this image right away, but production host pools will only begin using it when it is activated after testing and validation. The end-to-end process of image update, user acceptance testing, and deployment into production can be fully automated.

Ensure that users always log into a pristine, image-based session host by refreshing (re-imaging) used VMs after users log off. In single-user pooled scenarios, desktops will be automatically re-imaged when users log off. In multi-user pooled scenarios, session hosts will be re-imaged as soon as the last user logs off. This way, all hosts will be always kept up-to-date and in pristine state

Schedule a recurring update to Desktop Images and automatically re-image host pools on a pre-defined schedule. System and application updates can be automatically applied after hours without manual intervention.

When session host VMs are re-imaged, the VM name, AD computer object, IP address and DNS host name remain the same. No need to update other systems when re-imaging host VMs since they appear identical to external systems before and after the re-image process.

Before “sealing” the image (i.e. running “set as image” task) document any changes that were made. A report can be generated to show these changes and who made them.


Dramatically reduce Azure compute and storage costs up to 75% by precisely matching the size of Azure infrastructure to the user demand at all times. Nerdio Manager provides multiple auto-scaling algorithms based on CPU usage, RAM usage, user sessions, and user-driven behaviors. Multiple usage triggers can be combined (e.g. CPU and RAM) for precise scaling behavior.

Start VMs when users need them and stop them automatically when no longer in use. VM power management reduces Azure compute costs up to 75%.

Create new session host VMs on-the-fly, as needed, without keeping many VMs created and consuming storage costs by the OS disks. Newly created VMs are always fresh and based on the prestine image state. Add scripted actions to customize the VM provisioning process. When the VMs are now longer needed they can be automatically removed from the environment. A mix of “base capacity” (always created VMs) and “burst capacity” (just-in-time VMs) optimizes costs and user experience.

Auto-scale can start, stop, create, or delete session host VMs based on several auto-scale algorithms that take into account actual usage (e.g. CPU, current active sessions) and/or do so on a schedule to pre-stage capacity in expectation of users logging in.

Balance between cost savings and end-user experience by setting one of three scale in aggressiveness levels that controls the type of hosts can be scaled in (stopped or removed). High aggressiveness provides the highest savings and will forcefully disconnect even active users after end of work hours. Medium will stop host with disconnected sessions. Low aggresiveness will only stop or remove hosts that has no user sessions.

Create multiple auto-scale pre-stage settings to ramp up host pool capacity during certain days of week and times of days. In education environments multiple schedules can be used to turn on VMs based on a pre-defined class schedule.

Provide users with non-persistent, single-user pooled desktops that are used exclusively by a single user during the session then returned to the pool, optionally refreshed/re-imaged, and made available to others. This VDI host pool configuration provides significant savings as compared to permanently-assigned pesonal desktops.

Save up to 90% on Azure VM compute costs while testing an AVD deployment by creating session hosts as Spot VMs. Not to be used in production scenarios as VMs can be unexpectedly “evicted”. Easily convert VMs from spot to pay-as-you-go and back to spot VMs with this scripted action.

Save up to additional 60% on the cost of Azure compute by using Reserved Instances in combination with auto-scaling. Nerdio Manager will analyze prior auto-scale behavior and recommend quantity of CPU core reservations to purchase to take advantage of RI savings.

Host VMs shut down from inside Windows are in stopped, but not deallocated, state and continue to generate Azure compute costs. Nerdio Manager can automatically detect VMs in this state and deallocate them proactively.

Define “running” OS disk storage type (e.g. Premium or Standard SSD) and “stopped” OS disk storage type (e.g. Standard HDD). Auto-scale will change the OS disk to cheaper storage when it stopped and automatically change it to a more performance storage type when the VM is started. This results in up to 75% in OS disk storage savings when the VM is not running.

Save on OS disk storage costs and increase performance with Ephemeral OS disks that can be used for AVD session host VMs. Ephemeral OS disks are free and are stored on the Azure physical host’s local storage and are therefore faster.

Reduce the size of an image VM’s OS disk from the default 128GB to 64GB (or 32GB). This reduces storage costs for session host VMs by requiring a smaller disk and allows for use of smaller VMs with ephemeral OS disks.

Ensure high performance of Azure Files at the lowest possible cost. The performance characteristics of Azure Files Premium are determined by the provisioned capacity quota. Storage auto-scale increases capacity quota in response to increased storage latency (or on a schedule), and decreases it when the extra performance is no longer needed to save on costs.

Ensure high performance of Azure NetApp Files at the lowest possible cost. The performance of an Azure NetApp Files volume is determined by the volume size, regardless of capacity actually used. Storage auto-scale increases the volume size during times of peak demand (e.g. log-on and log-off storms) and decreases it automatically when the extra boost in performance is no longer needed. This is done based on a schedule and/or in response to elevated IO latency. Storage auto-scale also automatically grows volume (and capacity pool) size when capacity reaches a pre-defined threshold ensuring that it never runs out of space.

Shrink FSLogix VHD(X) by removing the “white space” from inside the profile container. This dramatically reducess FSLogix storage costs.

Automatically run Microsoft’s Windows 10 and Windows 11 virtual desktop optimization tool on session host VMs as they are created. This results in drastically improved performance and increased user-per-CPU density, which reduces total Azure compute costs.


Cloud PC License Usage Optimization

Reduce total cost of Windows 365 Cloud PCs by optimizing license assignment and reclaim and re-use unused licenses.

Extend existing AVD environments with Windows 365 Enterprise Cloud PCs. Nerdio Manager automatically creates the necessary network connections, images, and provisioning policies based on the current AVD configuration. It can also be used to deploy Windows 365 even if there is no existing AVD deployment.

Cloud PC device lifecycle management

Manage all aspects of Windows 365 Enterprise Cloud PCs. Restart, re-provision from image, resize to a larger VM size based on available licenses, end grace period when Cloud PC is no longer needed, and run any Powershell script on one or more Cloud PCs.

Cloud PC user group assignment

Create and manage Cloud PC provisioning policy and assign user security groups to policies to begin the provisioning process for licensed users.

Intune primary user management on Cloud PCs

Automatically detect if a provisioned Cloud PC does not have an assigned Intune primary user. Alert administrator and allow for one-click primary user assignment.

Leverage existing AVD images to create Cloud PC deployments. Image updates are automatically applied to AVD and Cloud PC environments using these shared images.

Scripted actions are shared between AVD and Windows 365 Enterprise Cloud PC environments. Scripts that install apps, apply optimizations, or anything else that can be scripted with Powershell can be applied to both AVD session hosts and Cloud PCs.

Migrate AVD personal desktops to Cloud PCs (Coming Soon)

Automate the migration process from a personal AVD host pool to an Enterprise Cloud PC. (Coming soon)


Enable host pool level active/active DR configuration and Nerdio Manager will automatically distribute session hosts across two Azure regions. Users will be distributed across VMs in both regions as they log in and FSLogix profiles will be automatically replicated using Cloud Cache. In case of an Azure region failure users will continue accessing VMs in the available region.

Auto-scale can automatically detect broken AVD session hosts and attempt to repair them by either restarting or deleting and re-creating the VMs without user intervention.

Protect against data center failure by automatically distributing session host VMs across Availability Zones (data centers) in supported Azure regions.

Azure availability sets of variable size can be optionally enabled. When enabled, session host VMs are automatically placed in availability sets when deployed.

Leverage native Azure backup to create versions of desktop images before making changes and easily revert to prior versions. Take a backup of an image while powering it on to modify or manually trigger a backup at any time.

Modify and update production images and test them without affecting current production host pools that use these images. When updating an image, select for the new version to be created in “staged” mode. Designated test host pools can start using and testing this image right away, but production host pools will only begin using it when it is activated after testing and validation. The end-to-end process of image update, user acceptance testing, and deployment into production can be fully automated.

Scheduled Nerdio Manager backup

Configure a scheduled backup of Nerdio Manager application by protecting App Service, Azure SQL database, and key vault contents.


Nerdio Manager is a single-customer Azure application deployed from the Azure Marketplace into a customer’s own Azure environment. It consists of Azure PaaS services only with no VMs to manage. The application is integrated into Azure AD and uses Graph API to turn the dials inside the Azure environment. No third-parties have any access into the customer’s Azure environment.

No third-party vendor access

Nerdio Manager is not a hosted SaaS service, but rather an Azure application that’s installed in a single customer environment. There is no third party access to this single tenant app deployment.

Data residency control

Because Nerdio Manager is an Azure application, customers can choose the Azure region where it is deployed. All associated metadata is stored in a selected Azure region with customer having full control over backup, retention, and destruction of this metadata.

Delegate access to deploy and administer Azure Virtual Desktop deployments to users with defined role-based access controls. Built-in AVD Admins can full access to the environment, Reviewers have read-only access, Desktop Admins can manage images and power state of host VMs, Help Desk users manage user sessions, and End-users can manage their own virtual desktop session in a self-service portal. Create your own custom RBAC roles and select Read-only or Full Access to all areas of Nerdio Manager, including limiting access to individual host pools.

Create custom roles to control admin access to all areas of Nerdio Manager. Custom roles define scope and level of access and can be assigned to users and security groups. Users can access modules in read-only or full access mode.

RBAC admin roles can be assigned to users and groups and proper level of access is provided at Workspace level and host pool. Different groups of admins can manage different sets of Workspaces and host pools within a larger AVD deployment.

Company-provided SSL certificate and domain name can be applied to Nerdio Manager for Enterprise Azure App Service to increase the security posture of the deployment.

Protect Nerdio Manager and AVD deployment by hardening the SQL, Key Vault, Storage Accounts, App Service by enabling private vnet endpoints in Azure.

Prevent Users from Using Saved Password in AVD Client App

Increase security posture of an AVD host pool by preventing users from using saved credentials in their AVD client app. Users will always be prompted for password when logging into their desktop.


Consolidated dashboard that combines usage, costs, and savings across all Workspaces in WVD deployment. Select desired time range and view graphs of named, concurrent, and active users. View graphs of host pools, hosts, and total CPUs. Review and export data on compute and storage costs savings.

Analyze Azure compute (VMs) and storage (OS disks, Azure Files and Azure NetApp Files) costs at per-hostpool, per-workspace and across the entire environment. Understand average per named, concurrent, and monthly active user costs.

Export detailed usage and costs data to be used for chargeback.

Review auto-scale behavior in an easy-to-understand, visualized dashboard that can be drilled into for more detail. All auto-scale behavior, including corresponding user sessions, can be reviewed for further optimization.

View project montly compute (VM) and storage (OS disks) costs when creating a new host pool. The real-time calculation is based on Azure pricing API and takes into account the entire auto-scale configuration profiles. This calculation provides the minimum host pool cost, assuming the pool stays at the minimum size and never scales out, and the maximum cost, assuming the host pool scale out to its maximum size and never scales in.

Azure list prices used for all calculations can be adjusted with a negotiated discount so all financial data accurately reflect actual Azure costs.

Be always in the know with automated notifications and alerts. Define rules to generate email alerts based on various conditions and actions. Select whom to notify based on tasks, statuses, resources, and other criteria.

Gain fully visibility into AVD environment that extends beyond the Azure Monitor Insights. User sessions dashboard provides a wholistic view into user performance that can be drilled down on a per-user basis to understand latency, app input delay, utilization patterns and more.

Hosts dashboard provides a deep analysis of VM performance and utilization (e.g. CPU, RAM, CPU queue, Disk queue, etc.) and displays recommendations for user-to-host density.

Application dashboard display per-application-per-user stastics to understand applicatino usage patterns, application resource consumption, and user behavior.

Track and report on all changes to desktop images performed by all users.


Leverage the power of Nerdio Manager automation by integrating with existing ITSM platforms (e.g. ServiceNow). Add and re-image hosts, create or update desktop images, control user sessions and much more.

Scripted actions provide limiteless flexibility in AVD deployments. Windows scripts can be used to execute any set of Powershell commands on VMs are created, started, stopped, remove, or re-imaged. This can be used to deploy applications, security software, optimizations, and much more. Azure runbooks can be used to configure and maintain the Azure environment on the outside of the VM. Many triggers are available including VM or AVD host create, start, stop, delete, image create, schedule, run-once, and more.

Synchronize scripted actions with Public and/or Private GitHub repositories. Use your favorite tools, like Visual Studio Code, to edit and maintain scripted actions with all of the power of GitHub workflows, versioning, and so much more. Scripted actions are automatically synchronized with GitHub repositories and any changes take effect immediately without any configuration changes made in Nerdio Manager.

Azure DevOps Integration with Scripted Actions (Coming Soon)

Synchronize scripted actions with Azure DevOps. Use your favorite tools, like Visual Studio Code, to edit and maintain scripted actions with all of the power of Azure DevOps workflows, versioning, and much more. Scripted actions are automatically synchronized with Azure DevOps repositories and any changes take effect immediately without any configuration changes made in Nerdio Manager.

Windows scripts and Azure runbooks can be executed automatically with security context maintained by Nerdio Manager during VM create, delete, start stop, and AVD host register operations.

Windows scripts and Azure runbooks can be executed on all hosts within a host pool either on demand or on a schedule with recurrence.

Automatically install software on newly created desktop images or maintain existing images with regular updates using Scripted Actions.

Execute Scripted Actions on desktop images while packaging the VM into an image object. These scripts do not impact the original image VM but only apply to the the resulting image. For example, SCCM agent can be uninstalled from the image but remain on the image VM where it is used to update and install software.

Leverage powerful scheduling capability to schedule any session host actions such as start, stop, add, delete, re-image, resize, activate, deactivate, run script, and more.

Health check probe for third-party tool monitoring

Get status of Nerdio Manager, SQL DB, Azure and AVD access via an unauthenticated URL. Can be used by monitoring tools to check environment health.

Define global variables that can be used by any scripted action. Variables are encrypted and stored securely in Azure Key Vault.

Nerdio Manager provides built-in integrations for popular desktop virtualization tools such as Teradici PCoIP, security and AV tools like Sophos, and much more.


Use Scripted Actions to install and manage applications on desktop images or during session host VM creation. Large library of popular software installations is included and gets updated on a regular basis. Create your own scripts to install and manage your own apps.

Applications installed on images or session hosts are automatically discovered and can be assigned to only some users and groups (whitelist) or be available to all users with exceptions (blacklist). Leveraging FSLogix application masking technology, apps are completely removed from user’s environment unless user is authorized.

Create MSIX images using msix apps, store them in an Azure Files based library with versioning, and deliver these apps seamlessly to users.

Upload native MSIX installer files and let Nerdio Manager automatically expand them into a VHDX container, capture all needed metadata, and make the app available for host pool attachment.

Upload multiple MSIX apps to be packaged together in a single VHDX image. Combining multiple apps in a single image reduces the number of VHDX files mounted on each session host VM and improves performance.

Upload and manage MSIX App Attach images to an Azure Files share. Update images to new versions and automatically apply to all host pools with existing assignments. Leverage images with multiple MSIX packages inside for more efficient app delivery.

Leverage native WVD MSIX App Attach integrations via the AVD agent. Assign MSIX packages to host pools from Nerdio Manager image library or use existing images storage on any SMB storage including Azure NetApp Files and file servers.

Upload and manage a library of self-signed or CA-issued certs that were used to package apps in MSIX format. These certificates can be automatically installed on desktop images or session hosts during provisioning.


Get Certified

Get Certified